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Abstract—Mental fatigue is common at work places, and it can 
lead to decreased attention, vigilance and cognitive 
performance, which is dangerous in the situations such as 
driving, vessel maneuvering, etc. By directly measuring the 
neurophysiological activities happening in the brain, 
electroencephalography (EEG) signal can be used as a good 
indicator of mental fatigue. A classic EEG-based brain state 
recognition system requires labeled data from the user to 
calibrate the classifier each time before the use. For fatigue 
recognition, we argue that it is not practical to do so since the 
induction of fatigue state is usually long and weary. It is desired 
that the system can be calibrated using readily available fatigue 
data, and be applied to a new user with adequate recognition 
accuracy. In this paper, we explore performance of cross-
subject fatigue recognition algorithms using the recently 
published EEG dataset labeled with two levels of fatigue. We 
evaluate three categories of classification method: classic 
classifier such as logistic regression, transfer learning-enabled 
classifier using transfer component analysis, and deep-learning 
based classifier such as EEGNet. Our results show that transfer 
learning-enabled classifier can outperform the other two for 
cross-subject fatigue recognition on a consistent basis. 
Specifically, transfer component analysis (TCA) improves the 
cross-subject recognition accuracy to 72.70 % that is higher 
than using just logistic regression (LR) by 9.08 % and EEGNet 
by 8.72 – 12.86 %. 

Keywords-Cross subject fatigue recognition; EEG; transfer 
learning; domain adaptation; deep learning 

I.  INTRODUCTION  
Resulting from brain over-activity, mental fatigue can 

happen after long-time continuous concentration on a task, 
stressful work, or be caused by other factors such as sleep 

deprivation. It can lead to a decrease in attention, vigilance 
and cognitive performance, which is dangerous for certain 
jobs, e.g., pilots, vehicle drivers, helmsmen. For example, the 
study in [1] shows that fatigue is the main cause of unsafe 
practices and impaired performances for crane tower 
operators. Since the onset of mental fatigue bears direct 
consequences on error chances and safety levels for a wide 
range of careers, it is desirable to detect mental fatigue in its 
early stage to prevent such situations in advance. 

Fatigue can be measured subjectively by psychometric 
questionnaires, e.g., the Checklist Individual Strength 
questionnaire (CIS) [2]. Cognitive tests such as Psycho-motor 
Vigilance Test (PVT) [3] can also be used to measure fatigue 
according to the subject’s reaction to the visual stimulus. 
However, such measurements inevitably interrupt the 
subject’s ongoing work, which makes it undesirable when the 
subject is focusing on the task such as driving a car, or 
operating a vessel. In addition, such methods also fail to 
monitor the fatigue state in real-time, which is essential for 
avoiding accidents in advance. Alternatively, physiological 
measurements, such as electroencephalography (EEG), 
electrocardiography (ECG), electrooculography (EOG) or eye 
tracking systems can be used to detect mental fatigue with a 
high temporal resolution by nonintrusive ways. Specifically, 
change of heart rate [4], increase in eye blink rates [5], as well 
as the increase of the pupil size [6] have all been proved to be 
valid indicators of mental fatigue. Among these physiological 
signals, EEG is believed to be the best one for detecting 
mental fatigue, since it directly measures neurophysiological 
activities happening in the brain. 

Although much existing research has proved the strong 
relation between EEG pattern and mental fatigue, most 
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existing algorithms are based on the intra-subject condition [7-
9] – sample EEG signals from the subject under non-fatigue 
and fatigue state are necessary for training the classifiers. In 
fact, these methods are not practical for common daily use 
since mental fatigue is a long and gradual process such that it 
may take hours to induce fatigue. The challenge of subject-
independent fatigue detection lies in the non-stable and non-
linear nature of EEG signal – it is different for different 
subjects and even for the same subject in different trails. In 
this paper, to evaluate the performance of subject-independent 
fatigue recognition, we present experiments to test several 
methods for subject-independent fatigue detection. Three 
classification methods are compared, namely classic classifier 
(logistic regression), transfer learning-enabled classifier 
(transfer component analysis), and deep-learning based 
classifier (EEGNet). EEG data recorded before demanding 
events are used in cross-subjects recognition of two fatigue 
levels. 

The paper is organized as follows. Related works are 
reviewed in Section II. Dataset and methods are described in 
Section III. The results are presented in Section IV which is 
followed by the discussion in Section V. The paper is 
concluded in Section VI. 

II. RELATED WORKS 

A. Fatigue detection from EEG signal 
Much research has been done to investigate the correlation 

between fatigue and EEG patterns. It was shown that spectral 
band power features can be used as a good indicator of 
different levels of mental fatigue. For example, an overnight 
sleep-deprived simulated driving task conducted on 12 
subjects by Gharagozlou et al. [10] suggested that fatigue 
could be indicated by increases in α power. Further research 
showed that fatigue is associated with significant increases in 
α and (θ + α)/β, as well as the decrease in θ/α values [11]. Jap 
et al. [12] discovered a more general result that the ratio of 
slow to fast EEG waves increased when the subject 
experiences fatigue. Chen et al. [13] conducted a 2-hour 
continuous mental arithmetic task without any break on 12 
subjects. Their results showed that mental fatigue leads to 
increased widespread EEG coherence which is not limited to 
specific brain regions. 

Entropy features of EEG signal have also been found to be 
valid indicators of mental fatigue. Liu et al. [14] used 
approximate entropy and Kolmogorov complexity of the EEG 
signal as discriminators between different fatigue states. In 
[15], 4 different types of entropy combined with 10 state-of-
the-art classifiers were used for subject-specific driver fatigue 
classification. The best accuracy of 96.60% on a single EEG 
channel was achieved when using Fuzzy Entropy. In [16], an 
accuracy of 94.00% for binary fatigue classification on 22 
healthy subjects was achieved by using entropy features 
combined with Gradient Boosting Decision Tree Model. 

In addition to traditional methods, recent progress relies 
on using deep learning models for fatigue classification. In 
[7], Residual Convolutional Neural Network (EEG-Conv-R) 
achieved an average accuracy of 84.38% for inter-subject 
fatigue classification, compared to 81.85 and 75.55% for 

SVM and LSTM. Data were collected from 10 healthy 
subjects over 16 channels. In [8], a deep neural network with 
SVM classifier at the last layer achieved an accuracy of 
73.29%. 

However, most of the existing works are based on the 
intra-subject condition – sample EEG signals from the subject 
under non-fatigue and fatigue state are necessary for training 
the classifiers. Although several papers [7, 9] declared their 
inter-subject accuracy, their experiments were designed by 
mixing up EEG samples from all subjects and dividing them 
into training and testing sets, which fails to separate EEG data 
from different individuals for training and testing. That said, 
in their inter-subject evaluation, part of the test subject's data 
was used for training. A preliminary work done by [17] 
achieved an accuracy of 39.80% for 4-level subject-
independent fatigue recognition using fractal dimension, 6 
statistical features and a linear discriminant analysis classifier 
without any domain adaptation technique used for the test 
subject. It is expected that our methods can allow a higher 
accuracy since the transfer learning techniques allow the 
classifiers to adapt to the test domain. 

B. Cross-subject EEG signal recognition by transfer 
learning 
In a cross-subject EEG recognition task, the training data 

and test data are from different subjects. Due to the fact that 
EEG patterns are subject-specific, EEG data and hence the 
features extracted therefrom tend to distribute dissimilarly 
among different subjects. Classic machine learning 
approaches assume that the training data and test data follow 
the same distribution, which can be hardly satisfied in a cross-
subject EEG recognition task. This distribution mismatch 
often causes degraded recognition accuracy. However, from a 
practical point of view, cross-subject EEG recognition is 
desired as it does not require labeled training data collected 
from the test subject. Considering the mental fatigue 
recognition task where it takes several hours to induce the 
fatigue state for the collection of labeled training data, it is not 
practical to calibrate the classifier each time before we can use 
it to recognize the fatigue state of a test subject. It is therefore 
desired that we can train a classifier with a readily available 
dataset comprising labeled data from other subjects, and apply 
the trained classifier to a test subject while maintaining the 
recognition accuracy. Domain adaptation [18, 19], a branch of 
transfer learning, addresses this concern. In a typical 
unsupervised domain adaptation problem, we have source 
domain data 𝐷ௌ  =  {(𝑥ௌభ, 𝑦ௌభ), … , (𝑥ௌ௡భ, 𝑦ௌ௡భ)}  with labels, 
and target domain data 𝐷்  =  {𝑥 భ், … , 𝑥 ೙்మ } needing to be 
classified. Let 𝒫(𝑋ௌ) and 𝒬(𝑋்) be the marginal distributions 
of 𝑋ௌ and 𝑋் from the source and target domain, respectively. 
It is assumed that 𝒫 ≠ 𝒬, but there exists a transformation 𝜙 
such that 𝑃൫𝜙(𝑋ௌ)൯ ≈ 𝑃൫𝜙(𝑋்)൯  and 𝑃൫𝑌ௌห𝜙(𝑋ௌ)൯ ≈𝑃൫𝑌 ห𝜙(𝑋்)൯. Using this mapping, classic machine learning 
methods can be applied, where we can train a classifier on 𝜙(𝑋ௌ) with 𝑌ௌ, and predict the class labels for 𝜙(𝑋்). In [20], 
we showed that domain adaptation can effectively improve 
the cross-subject recognition accuracy for EEG-based 
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emotion recognition. In this paper, we extend the investigation 
to EEG-based mental fatigue recognition. 

III. MATERIALS AND METHODS 

A. Dataset description  
In order to test cross-subject fatigue recognition, 

experiments are conducted on an open dataset. The dataset 
was published by Cao et al. [21], which were collected during 
the period from 2005 to 2012. In the experiment, fatigue and 
drowsiness were induced by a 90-minute sustained-attention 
night-time driving task in an immersive driving simulator. The 
participants were asked to drive and maintain the car in the 
center of the lane. Lane-departure events were randomly 
induced which makes the car drift to the left or right from the 
lane, and participants were asked to move back as quickly as 
possible by steering the wheel. The next event happened in 5–
10 seconds after the car returned to the center lane. The 
participants needed to sustain their attention to the random 
lane departure events throughout the whole experiment, and 
their reactions were timed. The reaction time provides a gauge 
of the subject’s fatigue level. 

Twenty-seven participants were invited to the experiment. 
EEG signals were recorded during the whole 90-minute 
experiment using Quik-Cap (NeuroScan) with 30 valid 
channels plus 2 reference channels based on a modified 
international 10–20 system at a sampling rate of 500 Hz. The 
raw dataset contains 18.21 GB files which are saved in “.set” 
format. The dataset was released recently and accessible from 
[22]. 

B. Data preparation 
The preprocessed version of the dataset available from 

[23] was used in this paper. As described by the authors [21], 
the raw EEG signals were filtered by 1-Hz high-pass and 50-
Hz low-pass finite impulse response (FIR) filters. Apparent 
eye blinks that contaminate the EEG signals were manually 
removed through visual inspection by the authors of the 
dataset. Ocular and muscular artefacts were removed by the 
Automatic Artifact Removal (AAR) plug-in of EEGLAB 
[24]. The processed data were finally downsampled to 128 Hz. 

As for epoch extraction, we follow the procedures the 
authors used on the same dataset in their previous paper [25]. 
Specifically, 3s-long EEG data (epoch) prior to the onset of 
the lane-departure events were extracted. The fatigue state in 
this duration was quantitatively estimated based on the 
reaction time (RT), which was the duration between the onset 
of the lane-departure event and the onset of the counter-
steering event. The RT in each lane-departure event was 
termed local RT. Additionally, global RT was defined as the 
average of local RTs across all epochs within a 90-second 
window before the onset of the deviation event. An alert RT 
was defined as the 5th percentile of all local RTs in the entire 
session. Then, the EEG epochs were labeled as such [25]: 
epochs with both local RT and global RT less than 1.5 × alert 
RT were non-fatigue epochs; epochs with both local RT and 
global RT greater than 2.5 × alert RT were fatigue epochs. To 
ensure sufficient epochs for training and testing, we consider 
subjects that have at least 50 epochs for both states. Finally, 

the non-fatigue and fatigue epochs were balanced for each 
participant. In this way, totally 837 non-fatigue epochs and 
837 fatigue epochs from 11 different participants were 
extracted, and the size of each epoch was 30 (channels) × 384 
(sample points). Sixteen subjects were excluded due to not 
having at least 50 epochs for fatigue/non fatigue states. The 
epoch numbers for each eligible subject are given in Table I. 

C. Feature extraction 
We used the spectral band power as fatigue features in this 

study, which were widely used in existing EEG-based fatigue-
related studies [10-12, 26]. The spectral band power was 
computed via Fast Fourier Transform on each EEG epoch 
from these four spectral bands: delta (1 – 4 Hz), theta (4 – 8 
Hz), alpha (8 – 12 Hz) and beta (12 – 30Hz). The final feature 
vector was a concatenation of spectral powers extracted from 
four bands and all available channels. In this study, the final 
feature vector was of 4 × 30 = 120 dimensions. 

D. Transfer learning method 
Transfer Component Analysis (TCA) was proposed by 

Pan et al. [18] to mitigate the mismatch of distributions 
between source data and target data, which causes degraded 
classification accuracy. It seeks a projection to a latent 
subspace, where the projected source data and target data 
achieves a reduced Maximum Mean Discrepancy (MMD) in 
a reproducing kernel Hilbert space (RKHS) [27], which 
measures the distance between the empirical means of two 
distributions. It has proven that MMD will asymptotically 
approach zero if and only if the two distributions are identical 
when the RKHS is universal [28]. Using the kernel trick, the 
MMD of source data 𝑋ௌ  and target data 𝑋்  in the resultant 
latent subspace evaluates to 

 MMD(𝑋ௌ, 𝑋்) = tr(𝑊ୃ𝐾𝐿𝐾𝑊), (1) 

where tr(∙)  is the trace operator, 𝑊 ∈ ℝ(௡భା௡మ)×௛  is the 
projection matrix, 𝑛ଵ and 𝑛ଶ are the number of examples in 𝑋௦ and 𝑋௧, respectively, ℎ is the dimension of the latent space, 𝐾 =  ൣ𝑘௜௝൧  is the kernel matrix defined on 𝑋 =  [𝑋ௌ; 𝑋்] , 
and 𝐿 =  ൣ𝐿௜௝൧ where 

TABLE I EPOCH NUMBERS FOR EACH ELIGIBLE SUBJECT. 

Subject ID Number of epochs 
Fatigue Non fatigue 

1 94 94 
5 66 66 
22 75 75 
31 74 74 
35 85 85 
41 83 83 
42 51 51 
43 70 70 
44 72 72 
45 54 54 
53 113 113 
Total 837 837 
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𝐿௜௝ = ⎩⎪⎨
⎪⎧ ଵ௡భమ   𝑖𝑓 𝑥௜, 𝑥௝ ∈  𝑋ௌ,ଵ௡మమ   𝑖𝑓 𝑥௜, 𝑥௝ ∈  𝑋்,− ଵ௡భ௡మ   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 .  

TCA seeks to minimize the MMD plus a regularization 
term subjecting to a variance constraint: 

 minௐ tr(𝑊ୃ𝐾𝐿𝐾𝑊) + 𝜇tr(𝑊ୃ𝑊), (2) 
s. t. 𝑊ୃ𝐾𝐻𝐾𝑊 =  𝐼, 

 
where 𝐻 =  𝐼 – 𝑛ିଵ𝟏௡𝟏௡ୃ  is a centering matrix, 𝑛 = 𝑛ଵ + 𝑛ଶ, 𝟏௡ is an all-one vector of dimension 𝑛, and 𝜇 is the trade-off 
parameter. The solution to 𝑊  is the ℎ  eigenvectors of (𝐾𝐿𝐾 + 𝜇𝐼)ିଵ𝐾𝐻𝐾  corresponding to the ℎ  leading 
eigenvalues [18]. 

E. Baseline methods for comparison  
We use logistic regression (LR) as a baseline method. LR 

is a simple yet effective binary classifier. Given a feature 
example 𝑥 , the probability of predicting 𝑥  as class 1 is 
estimated by 

 𝑃(𝑦 = 1|𝑥;  𝑊, 𝑏) = ଵቀଵା௘ష൫ೈ఻ೣశ್൯ቁ, (3) 

where 𝑊 and 𝑏 are the model parameters that need to be fit on 
the training data, and are usually found by gradient-descent 
based optimization. 

In addition, deep learning models are evaluated for 
comparison. It is expected that such models have a better 
performance than traditional machine learning models for 
cross-subject classification, since they can have a larger 
capacity with more parameters to accommodate a large 
amount of data from different subjects. Therefore, a state-of-
the-art deep learning model EEGNet specially designed for 
EEG signal classification is tested for comparison [29]. It was 
designed for a general EEG signal classification purpose and 
proved to work for both intra-subject and cross-subject 
classification on several different BCI-related open datasets 
including P300 visual-evoked potentials, error-related 
negativity responses (ERN), movement-related cortical 
potentials (MRCP), and sensorimotor rhythms (SMR). It is 
worth mentioning that this model takes raw EEG signals as 
input and directly learn from raw signals instead of hand-
engineered features. The choice of this model was also 
motivated by the availability of source code published by the 
authors of [30]. 

The structure of EEGNet was designed in analogous to the 
bandpass and CSP spatial filter steps in Filter bank common 
spatial patterns (FBCSP). EEGNet uses depthwise 
convolution [31] instead of fully connected layers for the 
purpose of reducing the number of trainable parameters. It 
contains a temporal convolution block, a spatial convolution 
block, a separable convolution block, followed by a dense 
layer. 

F.  Classification 
To simulate cross-subject fatigue recognition, we carried 

out leave-one-subject-out cross-validation on the dataset. In a 
leave-one-subject-out cross-validation setting, the data from 
one subject were held out from the dataset and reserved as test 
data, and the data from remaining subjects were pooled 
together and used as the training data. The recognition 
accuracy was then evaluated on the held-out subject. The 
process was repeated until each subject has served as test 
subject once. 

For training deep learning models, we followed the 
procedures used in the original paper [29] for cross-subject 
classification. Each time, one subject is selected as the test 
subject, the other two subjects are used for validation, and the 
rest are used for training. Test, validation and training subjects 
are selected in a sequential order. That is, when subject i is 
tested, subject i + 1 and i + 2 are used for validation. In this 
sequence, the last subject is followed by the first subject to 
form a circle. The process was repeated until each subject has 
served as test subject once. 

G. Setting of hyperparameters 
LR: The model parameters ( 𝑊  and 𝑏 ) of LR were 

optimized by batch gradient descent. The gradient descent was 
set to run for 100 iterations. The optimization stopped after 
100 iterations and the latest 𝑊  and 𝑏  were used as model 
parameters. 

TCA: We used a linear kernel 𝐾 in (2) and set 𝜇 to 1. The 
latent dimension ℎ was set to 80, as it is desired to learn a 
lower dimensional representation than the original features 
(120 dimensional). 

EEGNet: We use the default parameter setting 
implemented in [30]. Both of the EEGNet models – EEGNet-
4,2 and EEGNet-8,2, as proposed in the original paper [29] 
were tested. The models were fit by minimizing the binary 
cross-entropy using Adam optimizer with default parameters. 
We trained the models for 100 epochs with a minibatch size 
of 100. The dropout rate was 0.5 for both models. The number 
of trainable parameters for EEGNet-4,2 and EEGNet-8, 2 are 
946 and 1954, respectively. The structure and parameters of 
both networks are listed in Table II. 

IV. RESULTS 
The mean accuracy of all subjects in the leave-one-

subject-out cross-validation experiment are presented in Table 
III. TCA + LR gives the best accuracy of 72.70 %. Notably, 
applying TCA before LR can effectively improve the 
accuracy from 63.62 % to 72.70 % (9.08 % difference). TCA 
+ LR also gives the smallest standard deviation, signifying 
that the improvement is fairly consistent across different test 
subjects. This can be seen in Fig. 1 where the recognition 
accuracy for each individual subject is shown. TCA + LR 
consistently gives better performance than LR on all subjects 
except subject 7. The two deep learning-based methods do not 
perform better than classic machine learning approach in this 
experiment. EEGNet-8, 2 performs similarly as LR, whereas 
EEGNet-4, 2 performs slightly worse. 
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We applied one-way ANOVA to analyze the significance 
of difference of mean accuracy. The analysis showed a 
significant difference in the mean accuracy of different 
methods (F(3,40)=3.25, p=0.03). Post-hoc Bonferroni-corrected 
pairwise comparison suggested that there was a significant 
difference between TCA + LR and EEGNet-4, 2 (p=0.027). 
Other pairs of method did not exhibit significant difference 
(p>0.05). 

V. DISCUSSION 
Contrary to our expectation, the deep learning-based 

method did not give better recognition accuracy than classical 
machine learning approaches for fatigue recognition in this 
dataset. The reason might be due to directly learning from raw 
EEG signals. Raw EEG signals tend to be noisier than the 
features extracted therefrom. Without the infusion of expert 
knowledge (in the form of hand-engineered features) into the 
deep neural network, it might be learning more from the noisy 
components of EEG than the informative components. 
Another reason might be due to the relatively small amount of 
training samples. Unlike deep learning for image recognition 
which learns from abundant training samples, EEG 
recognition is often plagued by a small-sized training set. The 
deep learning models have a greater capacity due to the large 
number of parameters. Without sufficiently large training 
samples, the deep neural network might fail to learn 
meaningful features. 

VI. CONCLUSION 
In this paper, we present a study of EEG-based cross-

subject mental fatigue recognition. The typical EEG signal 
recognition method requires that the subject provide labeled 
training data to calibrate the classifier each time before use. 
However, for fatigue recognition, we argue that it is not 
practical to induce fatigue states and record the respective 
EEG signals for calibration for every subject, considering that 
the fatigue induction is long and weary. Cross-subject fatigue 
recognition could be the solution to a “plug and play” EEG-
based fatigue recognition system. We examined and 
compared several methods against each other: classic 
classifier (LR), transfer learning-enabled classifier (TCA + 
LR), and deep learning-based method (EEGNet). Experiments 
were done on a public EEG dataset where each subject was 
instructed to drive a car in a simulator for 90 minutes. Lane 
departure events randomly occurred during the course of 
driving. The fatigue state was gauged by the time of reaction 
to the lane departure event. Leave-out-subject-out cross-
validation was adopted to simulate the cross-subject fatigue 
recognition task. We found that TCA + LR performed the best 
among all methods: significantly better than EEGNet-4, 2 and 
presumably better than LR. Thus, the transfer learning-
enabled classifier obtained the best cross-subjects accuracy, 
which outperformed logistic regression (LR) by 9.08 % and 
EEGNet by 8.72 – 12.86 %. This suggests that transfer 
learning-enabled classifier may be a promising method for 
cross-subject fatigue recognition. We observed that deep 
learning-based method does not perform better than classic 

TABLE III MEAN ACCURACY (%)  AND STANDARD DEVIATION (%) OF 
LEAVE-OUT-SUBJECT-OUT CROSS-VALIDATION FOR RECOGNIZING 
FATIGUE AND NONFATIGUE STATES 

Method Mean Standard deviation 
LR 63.62 9.93 
TCA + LR 72.70 9.42 
EEGNet-8,2 63.98 11.10 
EEGNet-4,2 59.84 9.55 

Figure 1 Recognition accuracy for each individual subject 

TABLE II EEGNET STRUCTURE AND NUMBER OF PARAMETERS. 

Layer EEGNet - 8, 2 EEGNet - 4, 2 
Output 
shape 

Params Output 
shape 

Params 

Input (30, 384, 1) 0 (30, 384, 1) 0
Conv2D (30, 384, 8) 512 (30, 384, 4) 256
Batch 
Normalization 

(30, 384, 8) 120 (30, 384, 4) 120 

Depthwise 
Conv2D 

(1, 384, 16) 480 (1, 384, 8) 240 

Batch 
Normalization 

(1, 384, 16) 4 (1, 384, 8) 4 

Activation (1, 384, 16) 0 (1, 384, 8) 0
Average Pooling 
2D 

(1, 96, 16) 0 (1, 96, 8) 0 

Dropout (1, 96, 16) 0 (1, 96, 8) 0
Separable Con2D (1, 96, 16) 512 (1, 96, 8) 192
Batch 
Normalization 

(1, 96, 16) 4 (1, 96, 8) 4 

Activation (1, 96, 16) 0 (1, 96, 8) 0
Average Pooling 
2D 

(1, 12, 16) 0 (1, 12, 8) 0 

Dropout (1, 12, 16) 0 (1, 12, 8) 0
Flatten 192 0 96 0
Dense 2 386 2 194
Activation 2 0 2 0
Total Params  2018  1010
Trainable Params  1954  946
Non-trainable 
Params 

 64  64 
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approaches, possibly due to the limited training samples and 
the noisy EEG components. 
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